skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Mazumdar, Anupam"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available August 1, 2026
  2. The quantum gravity-induced entanglement of masses (QGEM) protocol for testing quantum gravity using entanglement witnessing utilizes the creation of spatial quantum superpositions of two neutral, massive matter-wave interferometers kept adjacent to each other, separated by a distance d . The mass and the spatial superposition should be such that the two quantum systems can entangle solely via the quantum nature of gravity. Despite being charge-neutral, many electromagnetic backgrounds can also entangle the systems such as the dipole-dipole and Casimir-Polder interactions. To minimize electromagnetic-induced interactions between the masses, it is pertinent to isolate the two superpositions by a conducting plate. However, the conducting plate will also exert forces on the masses and hence the trajectories of the two superpositions would be affected. To minimize this effect, we propose to trap the two interferometers such that the trapping potential dominates over the attraction between the conducting plate and the matter-wave interferometers. The superpositions can still be created via the Stern-Gerlach effect in the direction parallel to the plate, where the trapping potential is negligible. The combination of trapping and shielding provides a better parameter space for the parallel configuration of the experiment, where the requirement on the size of the spatial superposition, to witness the entanglement between the two masses purely due to their quantum nature of gravity, decreases by at least two orders of magnitude as compared to the original protocol paper. Published by the American Physical Society2024 
    more » « less
  3. To test the quantum nature of gravity in a laboratory requires witnessing the entanglement between the two test masses (nanocrystals) solely due to the gravitational interaction kept at a distance in a spatial superposition. The protocol is known as the quantum-gravity-induced entanglement of masses (QGEM). One of the main backgrounds in the QGEM experiment is electromagnetic (EM) -induced entanglement and decoherence. The EM interactions can entangle the two neutral masses via dipole-dipole vacuum-induced interactions, such as the Casimir-Polder interaction. To mitigate the EM-induced interactions between the two nanocrystals, we enclose the two interferometers in a Faraday cage and separate them by a conducting plate. However, any imperfection on the surface of a nanocrystal, such as a permanent dipole moment, will also create an EM background interacting with the conducting plate in the experimental box. These interactions will further generate EM-induced dephasing, which we wish to mitigate. In this paper, we will consider a parallel configuration of the QGEM experiment, where we will estimate the EM-induced dephasing rate and run-by-run systematic errors which will induce dephasing, and also provide constraints on the size of the superposition in a model-independent way of creating the spatial superposition. 
    more » « less
  4. Free, publicly-accessible full text available December 1, 2026
  5. This document presents a summary of the 2023 Terrestrial Very-Long-Baseline Atom Interferometry Workshop hosted by CERN. The workshop brought together experts from around the world to discuss the exciting developments in large-scale atom interferometer (AI) prototypes and their potential for detecting ultralight dark matter and gravitational waves. The primary objective of the workshop was to lay the groundwork for an international TVLBAI proto-collaboration. This collaboration aims to unite researchers from different institutions to strategize and secure funding for terrestrial large-scale AI projects. The ultimate goal is to create a roadmap detailing the design and technology choices for one or more kilometer--scale detectors, which will be operational in the mid-2030s. The key sections of this report present the physics case and technical challenges, together with a comprehensive overview of the discussions at the workshop together with the main conclusions. 
    more » « less